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Abstract

One important problem when calculating structures of biomolecules from NMR data is distinguishing converged
structures from outlier structures. This paper describes how Principal Components Analysis (PCA) has the potential
to classify calculated structures automatically, according to correlated structural variation across the population.
PCA analysis has the additional advantage that it highlights regions of proteins which are varying across the
population. To apply PCA, protein structures have to be reduced in complexity and this paper describes two
different representations of protein structures which achieve this. The calculated structures of a 28 amino acid
peptide are used to demonstrate the methods. The two different representations of protein structure are shown to
give equivalent results, and correct results are obtained even though the ensemble of structures used as an example
contains two different protein conformations. The PCA analysis also correctly identifies the structural differences
between the two conformations.

Abbreviations: NOE, nuclear Overhauser effect; PC, principal component; PCA, principal components analysis;
RMSD, root mean square deviation.

Introduction

Protein structure determination by NMR spectroscopy
is an iterative process (Wüthrich, 1986; Neuhaus and
Williamson, 2000). To determine the structure of a
protein, a large number of restraints are identified from
NMR spectra of the protein, and are used to calculate
preliminary structures. From these, a converged subset
of structures is selected and analysed to resolve am-
biguous restraints and identify incorrect ones. Inspec-
tion of the structures on a graphics workstation may
highlight regions of the structure which are poorly de-
fined, so that efforts to obtain more constraints can
be concentrated in those regions. The improved re-
straint list is then used for another calculation, and
the process is repeated a number of times until res-
olution cannot be improved any further or until the
desired resolution is reached. The NMR spectroscopist

carrying out the structure determination then selects
some of the final structures to represent the protein
structure. This selection is usually made by inspecting
the RMSDs and calculated energies of the structures
(calculated energy reflects the agreement of the protein
structure with ideal covalent constraints such as bond
lengths and bond angles, and with experimental con-
straints such as dihedral angles and distances derived
from NOE peaks).

This process would be relatively straightforward if
all the structures resulting from the structure calcula-
tion satisfied all the experimental and ideal constraints.
Unfortunately, they do not. The currently available
protein structure calculation methods produce some
structures where most of the constraints are satisfied,
some where a large number of constraints are violated
and some in between. The exact cause of this has
not been rigourously investigated, but it is thought to
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be because some structures become trapped in false
energy minima during calculations so cannot reach a
conformation where constraints are all satisfied before
the calculation finishes. This suggested cause has led
to the use of the terms ‘converged’ structures and ‘out-
lier’ structures. Converged structures are those where
the structure calculation has completed and produced
a structure where constraints are satisfied, and outlier
structures are those where the calculation has become
trapped in a local energy minimum and has not re-
sulted in a structure where the constraints are satisfied.
The problem for the NMR spectroscopist is to dis-
tinguish the two types of structure. This is important
both during the calculation, where initial structures
are used to resolve ambiguous constraints, and in the
final reporting of the structure where the selection of
structures will affect the reported RMSD. Distinguish-
ing converged and outlier structures is a challenging
problem. The population of calculated structures may
contain a high proportion of outlier structures and
may contain sub-groups (for example, structures with
different conformations of a loop). Visualising pro-
teins is difficult because they have many degrees of
conformational freedom, so their conformation can
only be characterised by a large number of variables.
Also, these variables are likely to be highly corre-
lated because changes in protein conformation tend
to be regional movements. These four characteristics
of structure ensembles make them very difficult to
analyse.

One method suggested for identifying converged
structures is the use of the energy ordered RMSD pro-
file (Widmer et al., 1993), but this has not become
widely used. This approach has the disadvantage that
it requires manual inspection of the results. An auto-
matic method would save time, and would help avoid
subjective judgements. This paper describes how Prin-
cipal Components Analysis (PCA) has the potential
to identify converged structures automatically. As will
be described below, PCA has been used to relate the
variability in protein structures to biological function,
but it is also suitable for classifying protein structure
ensembles.

Principal components analysis

PCA was first introduced to statistics about 70 years
ago, but only recently has it become widely used
through the availability of desktop computers and of
computational procedures for handling large matrices

(Manly, 1986; Eriksson et al., 1999). PCA has two
important characteristics:

1. It can be applied to data sets where the number of
variables exceeds the number of samples.

2. It produces valid results with data sets containing
highly correlated variables.
In fact, PCA exploits these two characteristics. If

some of the variables in the data set are highly cor-
related, then it will be possible to replace them by
a smaller number of latent variables, referred to as
Principal Components (PCs). This data model can be
represented as:




x11 . . . x1k

x21 . . . x2k

. . .

xn1 . . . xnk


 =




t1
t2
. . .

tk


 × (p1 . . . pn) +




ε11 . . . ε1k

ε21 . . . ε2k

. . .

εn1 . . . εnk




The original data consists of n samples, each of
which is represented by k variables. The observed vari-
ables (xnk) can be represented as the product of the
PC scores (pn) and the PC loadings (tk) plus an error
term. The PC loadings are constant for all the samples
in the population, but are selected to minimise the sum
of the error terms across all samples and all variables
(	εnk). If the variables present in the population are
highly correlated, then the PC model can replace a
large number of variables (xnk) by one variable per
sample (pk) with only a small disagreement between
the observations (xnk) and those calculated from the
PC score (p × tk).

Only one PC is shown in this example. However,
once the initial PC has been calculated, it can be sub-
tracted from the data and another PC can be calculated
on the matrix of error terms. This process can then
be repeated until the error term reaches zero, which is
when the number of PCs equals the number of samples
in the population.

Three important features of PCs are that:
1. They allow data reduction: a large amount of vari-

ance can often be explained by a small number of
PCs.

2. The first PC explains the highest proportion of
variance, and subsequent PCs explain decreasing
proportions of the variance.

3. All PCs are uncorrelated with one another (i.e. they
are orthogonal).
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An additional feature is that the PC loadings (tk)
are interpretable. Correlated variables which vary
across the population will have high PC loadings,
while uncorrelated variables have low loadings.

An important application of PCA is the identifica-
tion of outliers within a multivariate population (Egan
and Morgan, 1998; Eriksson et al., 1999). This can
be done using cross-validated PCA, where the PCA
calculation is repeated several times with a proportion
of the data left out. The samples that were left out are
then fitted to the model, and the process is repeated
until all samples have been left out at least once. This
process produces confidence limits for the PC scores
and the error terms which can be used to test whether
an individual sample is a member of that population or
not. A detailed discussion of the different methods for
outlier detection is outside the scope of this paper.

An important consideration in outlier detection
with NMR structure ensembles is that a large pro-
portion of the structures could be outliers, and the
structures may be sub-grouped. With such data, many
methods of outlier detection fail both by not identify-
ing outliers and by incorrectly identifying population
members as outliers. These failures are due to distor-
tions in the centre of the population, so the methods
which are least susceptible to a high proportion of
outliers are based around selecting a subset of data
and using the subset to test the remainder of the
population.

Essential dynamics
The first suggestion that PCA is a suitable method
for analysing ensembles of protein structures was by
Amadei et al. (1993), who applied it to the results
of molecular dynamics and named the analysis ‘Es-
sential Dynamics’. Molecular dynamics calculations
produce large numbers of structures, which may vary
considerably in conformation, so analysing them is
a challenging problem. Amadei et al. realised that
applying PCA to the ensemble of structures would
highlight the regions of the protein which were un-
dergoing the correlated movements that they thought
would be the most significant for biological function.
These regions could be identified from the PC load-
ings rather than by inspecting the structures manually.
Since the initial suggestion, Essential Dynamics has
been applied to molecular dynamics results from a
range of different proteins (for example, Mello et al.,
1998; Chau et al., 1999), has been used to compare
the results of molecular dynamics with structures de-
termined by NMR (Abseher et al., 1998), and has also

been used to identify biologically important variabil-
ity in a converged ensemble of NMR structures (van
Aalten et al., 1998; O’Donoghue et al., 2000). How-
ever, this paper appears to be the first to use PCA
to categorise an ensemble of protein structures into
converged ones and outliers.

Representing protein structures

To apply PCA to protein structures, a format for
representing the structures as variables has to be de-
veloped. Although it would be possible to use the
co-ordinates of every atom in the protein, this would
produce a huge data matrix which would take very
long times to analyse and the variation would be dom-
inated by the movements of surface side-chains. To
avoid these problems, this paper only considers two
different representations of the protein backbone and
ignores protein side chains. The first representation is
very similar to that used in Essential Dynamics and
it will be referred to as ‘deviation in Cα position’.
To calculate this representation, each structure is first
superimposed onto the lowest energy structure. Then
for every structure, the deviation in the x-, y- and
z- co-ordinates of each Cα atom from its position in
the lowest energy structure is calculated. Each struc-
ture is then represented by the x-, y- and z-deviations
of the Cα atoms of all its residues. The main differ-
ence between Essential Dynamics and this approach is
that Essential Dynamics uses the mean structure rather
than the lowest energy one. The lowest energy struc-
ture is preferable because the mean structure will be
distorted by outliers and may well be a poor structure
in terms of covalent contacts, bond lengths and such.
This last problem is commonly recognised in NMR
structure determinations, where ensembles are usually
represented by the structure with the lowest energy,
or the one closest to the mean, rather than the mean
structure itself.

As well as this approach, this paper also uses the
Cα-Cα distance matrix to represent protein structures
(Phillips, 1970). The Cα-Cα distance matrix contains
each and every Cα-Cα distance within the structure.
Cα-Cα distance matrices have the advantage that they
can be calculated without superposition (which is
computationally expensive) and are simple to inter-
pret, but they do contain a large number of variables;
this problem is considered in the discussion. There
are several examples of analysis of NMR structure
ensembles using Cα-Cα distance matrices to identify
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Table 1. Structural statistics for the 37 lowest
energy structures as calculated by the program
X-PLOR. The RMSD values are the average RMSD
to the average structure

Backbone RMSD (Å) 0.68 ± 0.06

All heavy-atom RMSD (Å) 1.63 ± 019

Bond length RMSD (Å) 0.0030 ± 0.0001

Bond angles RMSD (◦) 0.60 ± 0.01

Improper angle RMSD (◦) 0.32 ± 0.02

NOE restraint RMSD (Å) 0.044 ± 0.002

structured subdomains within proteins (Schwabe et al.,
1993; Kundrot, 1996).

Materials and methods

All data were calculated using EF40, a 28 amino acid
disulphide-linked protein. The structure determination
of this protein will be reported in full elsewhere but the
structural statistics of the 37 lowest-energy structures
are summarised in Table 1. Forty-nine structures were
calculated from 25 different random starting structures
by simulated annealing within the program X-PLOR
3.1 (Brünger, 1992) running on an IBM AIX worksta-
tion. X-PLOR was also used to calculate the RMSD
profiles of the structure ensemble, the deviations in
Cα position from the mean structure and the Cα-Cα

distance matrices. Principal Components Analysis was
done using the program Pirouette v 2.03 (Infometrix
Inc., Seattle) running on a 400 MHz Pentium PC
computer. Prior to PCA, the mean and the standard
deviation for each variable across all structures were
calculated. The mean was subtracted from each vari-
able, and the residual was divided by the standard
deviation. This is usually referred to as ‘mean cen-
tring/variance scaling’ data and it ensures that larger
and more variable values do not dominate during
analysis. Ten PCs were calculated, leaving out 10–
20% of the data for cross-validation. This calculation
took less than 2 min. For further analysis, sufficient
PCs to explain 75% of the variation in the population
were retained.

Outlier detection
As pointed out above, NMR structure ensembles may
be clustered and may contain a very high proportion of
outliers. The Smallest Half Volume method (SHV) is a
robust way of identifying outliers in populations which

Figure 1. The energy-ordered RMSD profile of the 49 structures
showing the RMSD of an ensemble plotted against the number of
structures within it. Structures were added to the ensemble in order
of their total calculated X-PLOR energy.

have these characteristics (Egan and Morgan, 1998).
In the SHV method, a proportion of the population
is taken as the core. The remainder of the popula-
tion is then tested against this core using a χ2-test
of the Mahalanobis distance. This use of the Maha-
lanobis distance means that the SHV method has much
in common with clustering methods which use the
Mahalanobis distance to group structures.

The SHV method will work in any population
where the core population is correctly identified. The
original implementation of SHV defined the core pop-
ulation as the 50% of the population clustered most
tightly. To apply the method to NMR structure en-
sembles, two modifications were necessary. First, only
20% of structures were used to define the core; this
reduces the dependence of the results on the propor-
tion of outliers. Second, the 20% of the population
selected as the core were selected as the 20% with
lowest total energy. Selecting the structures based on
energy ensures that the core population is made up of
the structures that agree best with experimental and
theoretical data. This alteration to the method is neces-
sary because NMR structure ensembles could contain
clusters of high energy structures, particularly in the
initial stages of automated structure calculation. In
such cases, the most tightly clustered structures could
be ones that agree poorly with experimental and theo-
retical data. This makes it unsatisfactory to select the
core population on tight clustering alone. Once the
core had been defined, other structures were tested
against this set using the supplemented Mahalanobis
distance as implemented in the program Pirouette.
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Figure 2. The cumulative variance explained by Principal Compo-
nents. The percentage of variance within the ensemble explained by
a PC model is plotted against the number of PCs in that model.

Figure 3. The PC scores of the 49 structures in the ensemble, calcu-
lated from the deviation in Cα position. Structures are numbered in
order of increasing energy and are plotted at the intersection of their
PC 1 score (horizontal axis) and their PC 2 score (vertical axis). PC 1
and PC 2 together represent 47% of the variation in the ensemble.

Results

Quality of the structures
Figure 1 shows the energy-ordered RMSD profile of
the 49 structures. For the 12 lowest-energy struc-
tures, the backbone RMSD is 0.38 Å while for the
37 lowest-energy structures, the RMSD of backbone
atoms is 0.68 Å, showing that the structure is well de-
fined. Table 1 shows the structural statistics for the 37
lowest-energy structures.

Principal Component Analysis: All 49 structures
To demonstrate the effectiveness of PCA in represent-
ing protein structures, 10 PCs were calculated for all
49 structures using both different structure represen-
tations. The graph in Figure 2 shows the cumulative

Figure 4. The PC scores of the 49 structures in the ensemble
calculated from the Cα-Cα distance matrix.

variance explained by these PCs. The first PC (PC1)
accounts for 28% of the variability across the 49 struc-
tures. In other words, 28% of the variation across the
49 structures can be explained by one latent variable
which is a product of all the original variables. Six PCs
together explain over 75% of the variability within
the 49 structures. PC scores explain approximately the
same proportion of variance, regardless of which of
the two different structure representations is used.

Figures 3 and 4 plot the first two PC scores of
all the structures in the ensemble as calculated using
the two different structure representations. As these
graphs plot the first two PCs, they visualise 47% of
the total variation in the population of 49 structures
and so provide a simple overview of the composition
of the population. The graphs also show that the two
data representations give very similar results. The axes
of the graphs are inverted relative to one another, so al-
most all the structures are in similar positions relative
to the other structures.

Most of the structures are divided into two distinct
clusters, suggesting that the population contains two
different conformations. Although this was not imme-
diately apparent from the RMSD profile (Figure 1), it
can be verified by calculating the RMSD of the two
clusters separately and together. The RMSD of the
17 structures in the low-energy cluster is 0.381 Å; the
RMSD of the 19 structures in the higher-energy cluster
is 0.413 Å; and the RMSD of both clusters together is
0.68 Å. This clearly demonstrates that the two clusters
represent different conformations of the protein.

As well as the two main clusters, there are also
some structures which do not group with either cluster
(structure numbers 46, 48 and 49). These are among
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the highest energy structures in the ensemble. In the
different data representations, their positions vary rela-
tive to the main clusters, showing that the two structure
representations are not entirely equivalent.

Interpreting principal components in structural terms
The presence of two different conformations in the
population raises the question, what is the difference
between them? This can be answered from the load-
ings that make up the PC that separates the clusters
(Manly, 1986; Eriksson et al., 1999). If a variable has
a loading near zero, it does not contribute to the PC,
but if it has a magnitude near 1 then it contributes con-
siderably to the PC. The sign of variable loading is also
important. Variables with loadings of the same sign are
positively correlated (when one increases, so does the
other) while variables with opposite sign loadings are
negatively correlated (one decreases when the other
increases). Examination of both the PC plots shows
that the two clusters have very similar PC 1 values,
and are separated by PC 2. Therefore, examining the
loadings of PC 2 will reveal which variables contribute
to PC 2, and so identify the variables which result in
differences between the clusters.

Figure 5 plots the loadings of PC 2 for the de-
viation in Cα position versus residue number. Some
residues have low loadings, so do not vary greatly
between the two conformations (e.g. residues 11–16),
but others have much higher loadings, so are differ-
ent between the two clusters. The region with the
highest loadings is the loop involving residues 21–25,
but there is also some variation involving the regions
around residue 4, residue 9, residue 19 and at the
N-terminus. The directions of the loadings give in-
formation about the direction of the movements. For
example, the x- and z- co-ordinates of residue 24 have
large negative loadings, implying that residue 24 has
lower x- and z- co-ordinates in one conformation than
in the other. In contrast, residue 21 has high x-, y-
and z- loadings, so this moves the opposite way (these
movements are relative to the co-ordinate system of
the lowest energy structure).

The loadings of PC 2 calculated using the Cα-
Cα distance matrix are plotted as a contour plot in
Figure 6. Each variable in the matrix represents the
distance between two Cα atoms and the three axes
of the contour plot are therefore the originating Cα

atom, the destination Cα atom and the loading, with
the loading as the z-axis or height. The area above and
right of the diagonal has been left blank because the
Cα-Cα distance matrix is entirely symmetrical. The

upper left portion of the graph contains no regions
of high loadings, implying they do not contribute to
PC 2 so do not vary consistently between the two clus-
ters of structures. Most of the high loadings of PC 2
occur on distances involving residues 20–25. For ex-
ample, high negative loadings of PC 2 are observed
for the distances between residue 21 and residues 8 to
11. In contrast, the loadings of the distances between
residue 21 and residues 2 to 6 are high but positive.
This implies that high values of PC 2 are associated
with a decrease in the distances between residue 21
and residues 8 to 11 and an increase in the distances
between residue 21 and residues 2 to 6. Figure 4
shows that structures with higher values of PC 2 have
lower energies, suggesting that the conformation with
shorter distances between residue 21 and residues 8 to
11 is the more favourable. Other consistent distance
variations can also be identified, such as the distances
between residue 23 and residues 25 to 28, which also
appear to be shorter in the low energy structures.

This brief analysis demonstrates how to analyse the
Cα-Cα distance matrix to get structural information
without having to examine the structures using inter-
active molecular graphics. Simple visual inspection of
the PC contour plot (Figure 6) provides considerable
clues about the differences between clusters of struc-
tures. The results also explain the observations made
from analysing the deviation in Cα position (Figure 5).
The residues with the highest deviation in Cα position
are residues 20–25, while the other regions with high
deviations move relative to residues 20–25 (residues
1–5, 9–10 and 17–19).

The differences identified using the PC scores can
be checked by inspecting the structures. Figure 7
shows the superposition of the lowest energy struc-
tures from each of the two clusters (structures 1 and
13). It is clear from this figure that most of the protein
backbone can be closely superimposed, but that the
loop between residues 21 and 25 is in very different
conformations in the two structures. This is exactly as
predicted from the analysis of PCA loadings. Closer
investigation shows that the observed structural differ-
ences are consistent with the PCA loadings. For ex-
ample, the distance between the Cα atoms of residues
8 and 21 is shorter in the low energy structure than
in the higher one (7.9 Å compared with 11.0 Å), as
is the distance between the Cα atoms of residues 23
and 28 (13.6 Å compared with 15.3 Å). This demon-
strates that the structural information provided by PCA
is equivalent to that obtained by manually analysing
the structures.
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Figure 5. The loadings of PC 2 from the PCA model calculated for the 49 structures in the ensemble using the deviation in Cα position. The
loading of a variable is plotted against the residue number of the Cα atom the variable refers to. The three values for each residue refer to the x-
(black), y- (white) and z- (grey) deviations of the Cα atom of that residue.

Figure 6. The loadings of PC 2 for the PCA model calculated for the 49 structures in the ensemble using the Cα-Cα distance matrix. The
horizontal and vertical axes are the residue numbers that the Cα-Cα distance is between, and the z-axis (height) is the loading of that distance.
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Figure 7. Superposition of the lowest-energy structures from the two clusters that PCA identifed. Structure 1 (grey) is from the low-energy
cluster and structure 13 (black) is from the high-energy cluster.

Detecting outliers
The 10 structures with lowest energy were used to
generate a cross-validated PCA model. The results of
testing the entire population against this model are
shown in Figures 8 and 9. The two structure rep-
resentations consistently identify the same structures
as being members of the core population. These are
structures 1–12, 14, 17, 20, 25, and 34 and one struc-
ture (37) which is identifed as being a member of the
core population by one representation and an outlier
by the other. This apparent inconsistency is explained
by examining Figures 8 and 9, which show that struc-
ture 37 is close to the 95% confidence limit in the two
data representations.

Comparison with the results of PCA on the whole
population shows that all the converged structures are
from one of the two conformational clusters that are
present (the lower cluster in Figure 3). This suggests
that structures with the second conformation should
not be selected to represent the structure, but it would
be more thorough to acquire further NMR data to
attempt to confirm that the protein does adopt the
suggested loop conformation.

Converged structures can also be identified from
the RMSD profile (Figure 1). Structures 1–12 are
clearly a well-defined core population, but the popu-
lation RMSD begins to increase when structure 13 is
added. However, the increase is not continuous; when
structures 14, 17, 20 and 25 are added the RMSD de-

Figure 8. The probability of a structure not being a member of the
same population as the 10 lowest energy structures, calculated from
the deviation in Cα position. The horizontal line is the 95% cutoff
used to select converged structures.

creases or levels off. This can be explained from the
PCA results, which show that these structures are from
the first protein conformation, while the remaining
structures are from the second alternative conforma-
tion. Thus, the RMSD increases when a structure from
the second conformation is added, but decreases when
one from the first is. This difference was very difficult
to identify from the RMSD profile, but is readily iden-
tified by PCA – either visually using the PCA plot, or
automatically using outlier detection.



69

Figure 9. The probability of a structure not being a member of the
same population as the 10 lowest energy structures, calculated from
the Cα-Cα distance matrix.

Discussion

It must be stressed that the methods described here
are not aimed at validating NMR structures. Validation
can only be carried out by comparing the results of a
structure calculation with data which was not used dur-
ing the calculation – for example, by cross-validation
of the constraints themselves (Brünger et al., 1993),
by comparison with NMR observables not used in
the calculation, or by comparison of the observed
NOE cross peaks with those expected from the cal-
culated structure (Doreleijers, 1999). Although the
core population is selected based on total energy, once
that has been done then other structures are classified
purely by whether or not they are within the structural
variability of the core population. This characteristic
distinguishes the approach from methods based solely
on analysis of total energy, RMSD or other means such
as Ramachandran angles.

It could be argued that structural variability alone
should be used as the criterion for identifying con-
verged structures. However, as pointed out in the
Methods section, this has the risk of selecting struc-
tures which are very similar to one another but which
agree poorly with the experimental data. This prob-
lem was observed with the structures used here; some
of the higher energy structures were more tightly
clustered than the low energy ones, so selection on
structural features alone would have been misleading
(results not shown).

The results here show that PCA can be usefully
applied to ensembles of protein structures. One par-
ticular success in this example was that PCA iden-
tified clustering of the structures into two different

conformations. The outlier detection method coped
successfully with this clustered data, while the RMSD
calculations were difficult to interpret. An additional
advantage of PCA is that the results can be analysed
to explain the difference in structure between clusters.
In this case, it is a difference in the conformation of the
loop involving residues 20 to 25. This paper has only
shown the application of PCA to one protein, but pre-
vious applications to structure ensembles suggest that
the approach will be generally applicable. For exam-
ple, in the ensemble of 40 insulin monomers, a PCA
model containing five PCs explained 75% of the vari-
ance in the data set, showing that the protein structure
ensemble contains considerable correlated variation
(O’Donoghue et al., 2000).

The main disadvantage of using cross-validated
PCA is that specialist software programs are required.
Several dedicated programs for multivariate statistical
analysis are available (Pirouette, used here, SIMCA-P
and Unscrambler), but it can also be implemented in
most specialist statistical programs (such as SAS and
SPSS) and in some mathematical ones (MATLAB)
which are more commonly available.

Two different representations of protein structures
were used here, and both of them gave very similar
results, showing that the assumptions made are valid.
The two different representions have different charac-
teristics. The Cα-Cα distance matrix does not require
superposition, or an average structure, and it is very
easy to interpret without the use of molecular graphics.
Its big disadvantage is the large number of variables in
the matrix. For a protein of length n it is (n2 − n)/2,
so that, for example, the matrix of a 50 amino acid
protein would contain 1250 variables. PCA can still
be applied to such large data sets, but calculations take
longer and the results are harder to interpret. Work is
now underway to investigate how the size of the matrix
could be reduced for larger proteins without loss of in-
formation, and how Cα-Cα distance matrices could be
effectively compressed before PCA calculations. The
alternative representation of protein structure (devia-
tion in Cα position) is much more compact (a data
size of 3n for an n-residue protein). However, calcu-
lating it requires superposition to an average structure
and the results can only be interpreted with reference
to the average structure, which will normally require
interactive molecular graphics. Despite these disad-
vantages, it appears to give very similar results to
the Cα-Cα distance matrix, so it is the method of
choice for larger proteins until more efficient methods
of analysing Cα-Cα distance matrices are developed.
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Finally, possible broader applications of these
methods should be mentioned. Although this paper
has shown the application of PCA to one ensemble
of protein structures, the methods could also be used
to compare protein structures from different sources.
For example, the crystal structure of a protein could
be tested against a PCA model derived from an NMR
structure ensemble to see if it falls within the variation
of the population of NMR structures or is significantly
different.

Conclusions

The method suggested here for analysing NMR struc-
ture ensembles has two main advantages. First, the
use of cross-validated PCA provides a relatively non-
subjective method of selecting which structures in
an ensemble are atypical so can be discarded. PC
calculation can be fully automated, making it an es-
pecially useful method for combined structure calcu-
lation/assignment protocols. The second advantage is
that the results are easy to interpret in structural terms.
The calculated PCs identify which regions of the pro-
tein structure are undergoing correlated movement, so
these areas can be targeted to obtain extra restraints.
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